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Abstract. We compare two different frameworks which have been proposed to include the η′ in chiral
perturbation theory. The equivalence of these two approaches is shown both for the purely mesonic case
and in the presence of the ground state baryon octet. The relation between the different sets of parameters
in both Lagrangians is clarified.

PACS. 12.39.Fe Chiral Lagrangians

1 Introduction

The QCD Lagrangian with massless quarks exhibits an
SU(3)R × SU(3)L chiral symmetry which is broken down
spontaneously to SU(3)V , giving rise to a Goldstone boson
octet of pseudoscalar mesons which become massless in
the chiral limit of zero quark masses. On the other hand,
the axial U(1) symmetry of the QCD Lagrangian is broken
by the anomaly so that the mass of the corresponding
pseudoscalar singlet does not vanish in the chiral limit.
The lightest candidate would be the η′ with a mass of 958
MeV which is considerably heavier than the octet states.
In conventional chiral perturbation theory the η′ is not
included explicitly, although it does show up in the form of
a contribution to a coupling coefficient of the Lagrangian,
a so-called low-energy constant (LEC).

However, experiment suggests that the physical states
— η and η′ — are mixtures of octet and singlet compo-
nents. In order to include this effect in chiral perturbation
theory one should treat the η′ as a dynamical field vari-
able instead of integrating it out from the effective theory.
This approach is also motivated by large Nc considera-
tions. In this limit the axial anomaly is supressed by pow-
ers of 1/Nc and gives rise to a ninth Goldstone boson,
the η′. The inclusion of the η′ in chiral perturbation the-
ory has been the subject of previous work, see e.g. [1–3].
But while the authors of [1,2] work with a U(3)R×U(3)L
invariant Lagrangian, gluonic terms have been included
explicitly in the effective theory in [3]. The equivalence of
both approaches is rather evident to lowest order both in
the chiral and the 1/Nc expansion, e.g., the Lagrangian in
(2.22) of Di Vecchia’s and Veneziano’s work [3] coincides
with the corresponding part of (2) in Leutwyler’s presen-
tation [2]. But so far no systematic comparison between
? Work supported in part by BMBF
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both schemes has been made to prove the equivalence at
higher orders. The purpose of the present work is to fill
this gap.

In the next two sections we will compare the mesonic
Lagrangians in both approaches and, furthermore, gener-
alize the approach of [3] to higher orders in the gluonic
terms. Having shown the equivalence of both frameworks
in the mesonic sector, we proceed by including the ground
state baryon octet in Sect. 4. The inclusion of the η′ in
baryon chiral perturbation theory has been the subject of
recent work [4,5] and again the two different approaches
have been used without clarifying the connection between
both schemes. It is therefore desirable to show the equiva-
lence also in the baryonic case. We conclude with a short
summary.

2 The U(1)A invariant effective Lagrangian

In this section we will briefly outline the method of ex-
tending the SU(3)R × SU(3)L symmetry of the effective
Lagrangian in conventional chiral perturbation theory to
U(3)R×U(3)L in a more generalized framework including
the η′, see e.g. [1,2]. Within this approach the topological
charge operator coupled to an external field is added to
the QCD Lagrangian

L = LQCD −
g2

16π2
θ(x)trc(GµνG̃µν) (1)

with G̃µν = εµναβG
αβ and trc is the trace over the color

indices. Under U(1)R × U(1)L the axial U(1) anomaly
adds a term −(g2/16π2)2Nf α trc(GµνG̃µν) to the QCD
Lagrangian, with Nf being the number of different quark
flavors and α the angle of the global axial U(1) rotation.
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The vacuum angle θ(x) is in this context treated as an ex-
ternal field that transforms under an axial U(1) rotation
as

θ(x)→ θ′(x) = θ(x)− 2Nfα. (2)

Then the term generated by the anomaly in the fermion
determinant is compensated by the shift in the θ source
and the Lagrangian from (1) remains invariant under ax-
ial U(1) transformations. The symmetry group SU(3)R×
SU(3)L of the Lagrangian LQCD is extended to U(3)R ×
U(3)L for L. 1 This property remains at the level of an
effective theory and the additional source θ also shows up
in the effective Lagrangian. Let us consider the purely
mesonic effective theory first. The lowest lying pseu-
doscalar meson nonet is summarized in a matrix valued
field U(x)

U(φ, η0) = u2(φ, η0) = exp{2iφ/Fπ + i

√
2
3
η0/F0}, (3)

where Fπ ' 92.4 MeV is the pion decay constant and the
singlet η0 couples to the singlet axial current with strength
F0. The unimodular part of the field U(x) contains the
degrees of freedom of the Goldstone boson octet φ

φ =
1√
2


1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

 , (4)

while the phase detU(x) = ei
√

6η0/F0 describes the η0 . The
symmetry U(3)R×U(3)L does not have a dimension-nine
irreducible representation and consequently does not ex-
hibit a nonet symmetry. We have therefore used the differ-
ent notation F0 for the decay constant of the singlet field.
The effective Lagrangian is formed with the fields U(x),
derivatives thereof and also includes both the quark mass
matrixM and the vacuum angle θ: Leff(U, ∂U, . . . ,M, θ).
Under U(3)R × U(3)L the fields transform as follows

U ′ = RUL†, M′ = RML†, θ′(x) = θ(x)− 2Nfα (5)

with R ∈ U(3)R, L ∈ U(3)L, but the Lagrangian re-
mains invariant. The phase of the determinant detU(x) =
ei
√

6η0/F0 transforms under axial U(1) as
√

6η′0/F0 =√
6η0/F0 + 2Nfα so that the combination

√
6η0/F0 +

θ remains invariant. It is more convenient to replace
the variable θ by this invariant combination, Leff =
Leff(U, ∂U, . . . ,M,

√
6η0/F0 + θ). One can now construct

the effective Lagrangian in these fields that respects the
symmetries of the underlying theory. In particular, the La-
grangian is invariant under U(3)R×U(3)L rotations of U
and M at a fixed value of the last argument. The most
general Lagrangian up to and including terms with two

1 Note that the Lagrangian actually changes by a total
derivative which gives rise to the Wess-Zumino term. We will
disregard this contribution, since it is irrelevant for proving the
equivalence of both schemes discussed in this presentation.

derivatives and one factor of M reads

Lφ = −V0 + V1〈∇µU†∇µU〉+ V2〈χ+〉+ iV3〈χ−〉
+V4〈U†∇µU〉〈U†∇µU〉+ iV5〈U†∇µU〉∇µθ
+V6∇µθ∇µθ. (6)

The expression 〈. . .〉 denotes the trace in flavor space and
the quark mass matrix M = diag(mu,md,ms) enters in
the combinations

χ± = 2B0(uMu± u†Mu†) (7)

with B0 = −〈0|q̄q|0〉/F 2
π the order parameter of the spon-

taneous symmetry violation. The covariant derivatives are
defined by

∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ)
∇µθ = ∂µθ + 2〈aµ〉. (8)

The external fields vµ(x), aµ(x) represent hermitian 3× 3
matrices in flavor space. Note that the term of the type
i〈U†∇µU〉∇µθ can be transformed away [2], but for our
purposes it is more convenient to keep this term explicitly.
Once the equivalence of both approaches is shown, one is
free to eliminate such a term. The coefficients Vi are func-
tions of the variable

√
6η0/F0 + θ, Vi(

√
6η0/F0 + θ), and

can be expanded in terms of this variable. At a given order
of derivatives of the meson fields U and insertions of the
quark mass matrixM one obtains an infinite string of in-
creasing powers of the singlet field η0 with couplings which
are not fixed by chiral symmetry. Parity conservation im-
plies that the Vi are all even functions of

√
6η0/F0 + θ

except V3, which is odd, and V1(0) = V2(0) = F 2
π/4 gives

the correct normalizaton for the quadratic terms of the
Goldstone boson octet.

3 The topological charge density within an
effective Lagrangian

In the literature, another approach of incorporating the
axial U(1) anomaly in an effective Lagrangian can be
found [3]. But so far no attempt has been made to compare
this scheme with the approach presented in the last sec-
tion. In this section we will set up an effective Lagrangian
following the ideas of [3] and compare it with the La-
grangian from (6). The starting point is the effective La-
grangian

Lφ =
F 2
π

4
〈∇µU†∇µU〉+

F 2
π

4
〈χ+〉

+a〈U†∇µU〉〈U†∇µU〉 (9)

which reduces to conventional SU(3)R × SU(3)L chiral
perturbation theory if the singlet field η0 is neglected. A
new low-energy constant a enters the calculation which for
our purposes here will be left undetermined. Next, one in-
troduces gluonic terms in order to reproduce the anomaly
in the divergence of the axial-vector current

∂µJ
µ
5 = 2i

∑
f

mf q̄fγ5qf +
g2

16π2
2Nf trc(GµνG̃µν) (10)



B. Borasoy: The η′ and the topological charge density 257

by defining Q(x) ≡ (g2/16π2)trc(GµνG̃µν). The correct
transformation under axial U(1) is achieved by adding the
term

δL =
i

2
Q〈logU − logU†〉 (11)

to the effective Lagrangian, where it is assumed that the
topological charge density Q(x) remains invariant under
U(1)A transformations. The most general effective La-
grangian in this framework up to and including terms with
two derivatives, one factor ofM and quadratic terms in Q
respecting the symmetries of the underlying theory reads

Lφ =
(F 2

π

4
+ v1Q

2
)
〈∇µU†∇µU〉+

(F 2
π

4
+v2Q

2
)
〈χ+〉+κQ

+
i

2
Q〈logU−logU†〉+ τQ2 + iv3Q〈χ−〉+ v6∂µQ∂

µQ

+
(
a+ v4Q

2
)
〈U†∇µU〉〈U†∇µU〉+ iv5〈U†∇µU〉∂µQ

(12)

where an irrelevant constant has been omitted. From
matching to QCD we know that the parity-violating piece
κQ of the effective Lagrangian equals

δL = −θ g2

16π2
trc(GµνG̃µν) = −θQ. (13)

We will therefore set κ = −θ in the following. Usually
authors have neglected some of these terms using only the
Lagrangian

L′φ =
F 2
π

4
〈∇µU†∇µU〉+

F 2
π

4
〈χ+〉+ a〈U†∇µU〉〈U†∇µU〉

+
i

2
Q〈logU − logU†〉 − θQ+ τQ2 (14)

in which Q decouples from the Goldstone boson octet φ.
This is motivated by the fact that the topological charge
density Q behaves in the large Nc limit as Q ∝ g2 ∝ 1/Nc
and higher orders of Q are suppressed by powers of 1/Nc.
In order to prove the equivalence of this approach to that
of the last section, we prefer to work with the Lagrangian
in (12). The generalization of the proof to higher orders,
both in the derivative expansion and in Q, is straightfor-
ward and will be discussed later. We will therefore restrict
ourselves to this Lagrangian in the beginning. The gluonic
term Q is treated as a background field and is integrated
out from the Lagrangian via its equation of motion

∂µ
δL
δ∂µQ

− δL
δQ

= 0. (15)

To lowest order in the derivatives and the quark masses
the equation of motion for Q reads

Q =
1
2τ

(
θ − i

2
〈logU − logU†〉

)
=

1
2τ

(
θ +
√

6η0/F0

)
≡ 1

2τ
Q0. (16)

Under axial U(1) tansformations the η0 field transforms
as
√

6η0/F0 →
√

6η0/F0 + 2Nfα, where α is the angle of

the axial U(1) rotation. For Q to remain invariant, θ has
to compensate for the change in η0, cf. (2),

θ → θ − 2Nfα. (17)

It is therefore more convenient to consider θ as an exter-
nal field θ(x) which has under U(1)A the transformation
property given in (17) rather than to treat it as a constant
(see the work by Di Vecchia and Veneziano [3] for the lat-
ter case). This leads to an effective Lagrangian which re-
mains invariant also under U(1)A rotations in agreement
with the first approach. Otherwise, Q would not be U(1)A
invariant in contradiction to the assumption. Reinserting
the solution 1

2τQ0 of the equation of motion for Q into the
Lagrangian in (12) one obtains

Lφ =
(F 2

π

4
+

v1

4τ2
Q2

0

)
〈∇µU†∇µU〉

+
(F 2

π

4
v2

4τ2
Q2

0

)
〈χ+〉 −

1
4τ
Q2

0 + i
v3

2τ
Q0〈χ−〉

+
(
a+

v5

2τ
− v6

4τ2
+

v4

4τ2
Q2

0

)
〈U†∇µU〉〈U†∇µU〉

+i
( v5

2τ
− v6

2τ2

)
〈U†∇µU〉∇µθ +

v6

4τ2
∇µθ∇µθ. (18)

This Lagrangian is in complete agreement with the one
in (6), once one expands the functions Vi in powers of√

6η0/F0 + θ = Q0 and keeps only the first terms in the
expansions. There is a one-to-one correspondence between
the low-energy constants in both schemes to the order we
are working. This equivalence is maintained at higher or-
ders both in the derivative expansion and in the back-
ground field Q.

Firstly, we will examine the latter case by adding a
piece δL = λQ4 to the Lagrangian. Other terms with
higher powers of Q can be included in the Lagrangian as
well, but they do not alter the following considerations. In
order to keep the presentation lucid, we restrict ourselves
to this simple extension. The modified equation of motion
for Q reads to leading order in the derivatives and quark
masses

−Q0 + 2τQ+ 4λQ3 = 0. (19)

Although this equation can still be solved analytically, we
prefer to solve it perturbatively, since this method can
be generalized to arbitrary high powers in Q. The 1/Nc
expansion provides the perturbative framework for solving
the equation of motion if higher powers of Q are included.
To next-to-leading order in 1/Nc one can write

Q =
1
2τ
Q0 + δQ (20)

and (19) leads then to

δQ = − λ

4τ4
Q3

0 (21)

modulo higher corrections in 1/Nc, i.e. higher orders of
Q0. Reinserting the solution for Q into the effective La-
grangian one obtains a similar Lagrangian as in (18), but
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with higher orders in Q0 =
√

6η0/F0 + θ which for the
sake of brevity are not shown here. Therefore, going up to
higher powers of Q is similar to expanding the functions
Vi to higher orders in

√
6η0/F0 + θ. Having examined the

impact of higher orders of Q in the effective Lagrangian,
we will restrict ourselves to the Lagrangian with factors
of Q and Q2 given in (12).

So far we have eliminated the field Q via its equation
of motion at lowest order in the derivatives and quark
masses. We will now proceed by including a term of higher
chiral order into the equation of motion. In order to keep
the arguments as simple as possible we restrict ourselves
to the term i〈U†∇µU〉∂µQ. The inclusion of further terms
such as iQ〈χ−〉 is straightforward and can be treated in a
similar way. The equation of motion is then derived from
the Lagrangian

δL =
i

2
Q〈logU − logU†〉 − θQ+ τQ2 + iv5〈U†∇µU〉∂µQ

(22)
and reads

iv5∂µ〈U†∇µU〉 = −Q0 + 2τQ. (23)

We can decompose the solution for Q into the piece at
lowest chiral order 1

2τQ0 and a small perturbation ∆Q

Q =
1
2τ
Q0 +∆Q (24)

so that
∆Q =

i

2τ
v5∂µ〈U†∇µU〉. (25)

Inserting Q into the Lagrangian in (12) and neglecting
terms of higher chiral orders, the only additional terms
linear in ∆Q read

δL = −
(√

6η0/F0 + θ
)
∆Q+ τ2

Q0

2τ
∆Q = 0. (26)

Therefore, taking only the term iv5〈U†∇µU〉∂µQ into ac-
count and working to second order in the derivative ex-
pansion, the additional terms in the Lagrangian happen to
cancel. But in general the procedure of eliminating Q via
its equation of motion perturbatively in the derivative or
quark mass expansion will produce terms of higher chiral
orders and will lead to the renormalization of the perti-
nent couplings of such terms. This concludes the proof
of the equivalence of the Lagrangian which explicitly in-
cludes the topological charge density with the one given
in the last section up to any order both in the derivative
expansion and in Q. At this point, we would like to stress
that in order to prove the equivalence, it is essential that
Q is eliminated via its classical equation of motion. Using
the equation of motion with quantum corrections for Q
would destroy the equivalence, since this would lead, e.g.,
to nonanalytic expressions in the quark masses which can-
not be absorbed by a Lagrangian that is a polynomial in
the quark mass matrixM. Such nonanalytic terms are ab-
sent in the approach of [1,2]. Furthermore, the quantum
corrections of the equation of motion for Q are in general
divergent and have to be regularized. This leads to scale
dependent contributions which must be compensated by
a suitable redefinition of the pertinent coupling constants.

4 Inclusion of baryons

After having ensured ourselves that the approaches dis-
cussed above are equivalent in the purely mesonic sector,
we can now proceed by including the ground state baryon
octet in the effective theory. To this end, it is convenient
to summarize the meson fields in an object of axial-vector
type with one derivative

uµ = iu†∇µUu†. (27)

The matrix uµ transforms under U(3)R×U(3)L as a mat-
ter field,

uµ → u′µ = KuµK
† (28)

with K(U,R,L) the compensator field representing an el-
ement of the conserved subgroup U(3)V . In the context
of the first scheme the baryonic Lagrangian up to linear
order in the derivative expansion has already been given
in [4] and reads

LφB = iW1〈[Dµ, B̄]γµB〉 − iW ∗1 〈B̄γµ[Dµ, B]〉+W2〈B̄B〉
+W3〈B̄γµγ5{uµ, B}〉+W4〈B̄γµγ5[uµ, B]〉
+W5〈B̄γµγ5B〉〈uµ〉
+W6〈B̄γµγ5B〉∇µθ + iW7〈B̄γ5B〉 (29)

with Dµ being the covariant derivative of the baryon fields
and the baryon octet B is given by the matrix

B =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

 (30)

which transforms as a matter field

B → B′ = KBK†. (31)

The Wi are functions of the combination
√

6η0/F0 + θ.
From parity it follows that they are even in this variable
except W7 which is odd.

If one prefers to include the background field Q ex-
plicitly, see e.g. [5]2, the baryonic Lagrangian reads up to
quadratic terms in Q

LφB = i
(
− 1

2
+ αQ2

)
〈[Dµ, B̄]γµB〉

−i
(
− 1

2
+ α∗Q2

)
〈B̄γµ[Dµ, B]〉

+
(
−
◦
M +βQ2

)
〈B̄B〉

+
(
− 1

2
D + γQ2

)
〈B̄γµγ5{uµ, B}〉

+
(
− 1

2
F + δQ2

)
〈B̄γµγ5[uµ, B]〉

+
(
− 1

2
Λ+ εQ2

)
〈B̄γµγ5B〉〈uµ〉

+iκQ〈B̄γ5B〉+ λ〈B̄γµγ5B〉∂µQ. (32)

2 In [5] a subset of the Lagrangian considered here has been
discussed.
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Taking Q from the equation of motion at lowest order as
given in (16) one obtains

LφB = i
(
− 1

2
+

α

4τ2
Q2

0

)
〈[Dµ, B̄]γµB〉

−i
(
− 1

2
+

α∗

4τ2
Q2

0

)
〈B̄γµ[Dµ, B]〉

+
(
−
◦
M +

β

4τ2
Q2

0

)
〈B̄B〉

+
(
− 1

2
D +

γ

4τ2
Q2

0

)
〈B̄γµγ5{uµ, B}〉

+
(
− 1

2
F +

δ

4τ2
Q2

0

)
〈B̄γµγ5[uµ, B]〉

+i
κ

2τ
Q0〈B̄γ5B〉

+
(
− 1

2
Λ− λ

2τ
+

ε

4τ2
Q2

0

)
〈B̄γµγ5B〉〈uµ〉

+
λ

2τ
〈B̄γµγ5B〉∇µθ. (33)

This Lagrangian agrees with the one in (29) after expand-
ing the functions Wi and taking only the lower orders into
account. Higher powers of Q correspond to higher orders
in the expansion of the Wi.

This time it is of particular interest what kind of mod-
ifications in the Lagrangian result if Q is eliminated via an
equation of motion which includes the baryons. For sim-
plicity we will restrict ourselves to the equation of motion
which results from the Lagrangian

δL = −Q0Q+ τQ2 + iκQ〈B̄γ5B〉. (34)

The pertinent equation of motion reads

−Q0 + 2τQ+ iκ〈B̄γ5B〉 = 0 (35)

with the solution

Q =
1
2τ

(
Q0 − iκ〈B̄γ5B〉

)
. (36)

Reinserting the solution for Q into the Lagrangian gives
rise to terms quartic in the baryons, e.g. 〈B̄γ5B〉〈B̄γ5B〉.
Since we restricted ourselves from the beginning to the
one-baryon sector, we can drop these additional con-
tributions. But in general such terms will renormal-

ize the parameters of an effective theory with more
baryons.

5 Summary

In this work we have shown the equivalence of two dif-
ferent frameworks which have been proposed to include
the η′ in chiral perturbation theory both in the purely
mesonic sector and in the presence of the ground state
baryon octet. In the first approach, one starts with an
effective chiral Lagrangian which is invariant under axial
U(1) rotations. This is achieved by treating the vacuum
angle θ as an external field θ(x) which transforms under
U(1)A in such a way that it compensates the term added
to the QCD Lagrangian by the anomaly.

In the second framework, one keeps the topological
charge density Q as a background field within the effec-
tive theory. The chiral Lagrangian includes a term pro-
portional to Q which is not invariant under U(1)A and
reproduces the anomaly in the divergence of the axial-
vector current. The field Q, on the other hand, is treated
as U(1)A invariant and is eliminated via its classical equa-
tion of motion. The U(1)A invariance of Q is only fulfilled
if one adds a parity violating piece θQ to the Lagrangian
and proposes the same transformation law under U(1)A
for θ as in the first scheme. The relation between the dif-
ferent sets of parameters in both Lagrangians is clarified
for arbitrary high powers of Q. From our discussion it be-
comes clear, that the first procedure of starting with an
U(1)A invariant Lagrangian is simpler, although the sec-
ond framework might serve as a check for deriving the
effective Lagrangian.

Useful discussions with S. Bass, N. Kaiser, and W. Weise are
gratefully acknowledged.
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